MULTICAL® 302

Especificaciones técnicas

- Configurable in-situ para instalar en impulsión o en retorno
- Caudalímetro de metal PN25, aprobado hasta 130°C
- Baja perdida de presión por debajo de 0,1 bar en todos los tamaños disponibles
- Rango dinámico de hasta 1:1600 desde arranque a saturación – 1:250 (qi:qp)

Un contador todo terreno de calor y frío, fácil de instalar y fácil de usar

Aplicación

Las dimensiones mínimas del MULTI-CAL® 302 permiten que este contador compacto todo terreno para calor y frío pueda instalarse en cualquier sitio. El contador se puede girar durante la instalación, incluso en sistemas muy compactos, lo que permite obtener una lectura óptima de la pantalla en todo momento.

El robusto caudalímetro de metal resiste hasta 130°C permanentemente, con una protección efectiva contra la condensación que se puede utilizar tanto en sistemas PN16 como PN25.

El caudalímetro se ha diseñado con la tecnología de ultrasonidos única de Kamstrup, la cual le asegura una vida útil extremadamente larga, incluso en sistemas de calefacción que contienen magnetita.

Funcionalidad

El MULTICAL® 302 consta de un caudalímetro basado en ultrasonidos, una pantalla electrónica y un par de sensores Pt500. Estos componentes se calibran por separado y posteriormente son ensamblados en un contador compacto de calor, frío o combinado calor/frío.

El contador cuenta con un registrador de datos que guarda todos los registros relevantes de las últimas 960 horas, 460 días, 24 meses y 15 años.

El contador se puede configurar durante la instalación para montaje del caudalímetro en la tubería de impulsión o en la de retorno. Además es posible configurar las unidades métricas y la resolución, así como la fecha, la hora y la dirección de M-Bus sin necesidad de herramientas especiales, simplemente presionando un botón.

M-Bus cableado o inalámbrico


El MULTICAL® 302 está disponible con M-Bus y un cable fijo de 1,5 m o con M-Bus inalámbrico en modo C1 ó T1 OMS según la norma EN 13727-3.

La comunicación M-bus está separada galvánicamente y cuenta con detección automática de baudios 300/2400, direccionamiento primario y secundario y detección de colisión. El consumo de corriente del Máster es menor a 1 unidad de carga y se pueden leer los registros para calor y frio.

La comunicación de datos inalámbrica y el M-Bus inalámbrico siguen la norma europea EN 13757-4 y el telegrama de datos es configurable para los modos C1 ó T1 OMS.

La comunicación de datos, incluye encriptación AES de 128 bits.

Contenido

Funciones del integrador	3
Programación y verificación	7
Comunicación	8
Datos homologados	11
Datos eléctricos	12
Datos mecánicos	13
Material	13
Precisión	14
Especificaciones de pedido	15
Croquis dimensional	16
Pérdida de presión	18
Accesorios	19

Cálculo de energía

El MULTICAL® 302 calcula la energía en base a la fórmula indicada en EN -1:2007, dónde se utiliza la escala internacional de temperatura de 1990 (ITS-90) y la definición de presión de 16 bar.

Simplificando, el cálculo de la energía se puede expresar del modo siguiente:

Energía = $V \times \Delta\Theta \times k$.

V es el volumen de agua suministrada
 ΔΘ es la diferencia de temperatura medida
 K es el coeficiente térmico del agua

El integrador siempre calcula la energía en [Wh], y a continuación la convierte en la unidad de medida elegida.

00 13.<u>9</u>63

E [Wh] =	$V \times \Delta\Theta \times k \times 1.000$
E [kWh] =	E [Wh] / 1.000
E [MWh] =	E [Wh] / 1.000.000
E [GJ] =	E [Wh] / 277.780
E Gcal =	E [Wh] / 1.163.100

Tipos de aplicación

El MULTICAL® 302 opera con 4 fórmulas diferentes: E1, E3, E8 y E9, las cuales se calculan en paralelo con cada integración sea cual sea la configuración del contador.

Los cuatro tipos de energía se calculan como sigue:

E1=V1(T1-T2)k Energía de calefacción (V1 en impulsión o retorno) E1=V1(T2-T1)k Energía de refrigeración (V1 en impulsión o retorno)

E8=m³xT1 Temperatura media (impulsión) E9=m³xT2 Temperatura media (retorno)

De este modo el MULTICAL® 302 es capaz de calcular la energía térmica y de refrigeración en la mayoría de aplicaciones. Todos los tipos de energía quedan registrados y pueden ser consultados sin importar la configuración.

Medición del caudal

El MULTICAL $^\circ$ 302 calcula el caudal de agua instantáneo cada cuatro o cada dos segundos dependiendo de la configuración.

G_P. 6.1 E d_A√1

Medida de la potencia

El MULTICAL® 302 calcula la potencia instantánea partiendo del caudal de agua y la diferencia de temperatura medida en la última integración.

La potencia instantánea se actualiza en la pantalla cada 32 ó cada 8 segundos dependiendo de la configuración.

.₄⊃ 15.5 kw

Caudal máximo y potencia

El MULTICAL® 302 registra los caudales y potencias máximas anuales y mensuales. Estos registros se pueden leer mediante la comunicación de datos o desde la pantalla en "modo TECH".

Todos los valores máximos se calculan como el promedio más alto de una serie de mediciones de caudal o potencias instantáneas. El periodo aplicado en todos los cálculos se elige dentro del intervalo de 1...1440 min.

Medición de temperatura

Las temperaturas de impulsión y retorno se miden por medio de un par de sondas PT500 de dos hilos.

El circuito de medición incluye un conversor analógico-digital de alta resolución, con un rango de temperaturas de 0.00 °C hasta 155.00 °C.

Además de las temperaturas instantáneas para el cálculo de la energía, también se pueden mostrar las temperaturas promedio registradas de forma anual y mensual.

Funciones de la pantalla

El MULTICAL® 302 está provisto de una pantalla de cristal líquido de fácil lectura con 8 dígitos, unidades de medida y panel de información. En las lecturas de energía y volumen se emplean 7 dígitos además de sus unidades de medida correspondientes, mientras que se emplean 8 dígitos para el número del contador entre otros datos.

Por defecto se muestra la energía acumulada. Cuando se pulsa el botón la pantalla responde inmediatamente mostrando otras lecturas. La pantalla vuelve automáticamente a la indicación de energía una vez transcurridos 4 minutos desde la última pulsación del botón y después de 4 minutos sin activación la pantalla se apaga para ahorrar energía.

El contador usa cuatro ciclos de pantalla para cuatros situaciones diferentes:

- User ó ciclo de usuario
- Tech ó ciclo técnico
- Setup ó ciclo de configuración
- Test ó ciclo de prueba

Sólo un ciclo se muestra a la vez.

User ó ciclo de usuario

El ciclo User es el ciclo primario y es accesible cuando el contador está instalado y funciona con normalidad. El ciclo incluye las lecturas legales y las más utilizadas. El ciclo User está destinado principalmente para el usuario del contador.

Tech ó ciclo técnico

El ciclo Tech es principalmente para técnicos y demás personas que estén interesadas en ver más datos. El ciclo Tech muestra todos los registros legales y otros registros importantes así como los datos del registrador.

Setup ó ciclo de configuración

El ciclo Setup contiene todos los parámetros que se pueden cambiar en el contador. Los parámetros que se pueden cambiar son:

- No. de cliente
- Fecha
- Hora
- Fecha de cierre de facturación
- · Instalación del caudalímetro (impulsión/retorno)
- Unidad de energía/resolución
- Dirección primaria de M-Bus
- · Periodo de integración para maxímetro
- · Límite para cambio Calor/frío
- Radio (on/off)

3-SELUP

Test ó ciclo de prueba

El ciclo Test está destinada a laboratorios u otros que requieran calibrar o verificar el contador.

Códigos Info

El MULTICAL® 302 supervisa constantemente una serie de funciones importantes. En caso de producirse un grave error en el sistema de medición o en la instalación, en la pantalla aparecerá un "INFO" parpadeante mientras persista el error sin importar la lectura que elija. El campo "INFO" desaparecerá automáticamente cuando se haya eliminado la causa del error.

Un registrador de sucesos "INFO" indica cuantas veces ha ocurrido un código Info.

El registrador de sucesos INFO conserva los 50 cambios más recientes, de los cuales se pueden visualizar 36.

Código Info	Descripción	Tiempo de respuesta
0	No hay irregularidades	-
1	Sin alimentación principal	-
4	Sonda T2 fuera del rango de medición	< 32 seg.
8	Sonda T1 fuera del rango de medición	< 32 seg.
32	La diferencia de temperatura tiene polaridad incorrecta	< 32 sec. y 0,05 m ³
128	Tensión de alimentación demasiado baja	< 10 seg.
16	Caudalímetro con señal débil o aire	< 32 seg.
2	Caudalímetro con dirección de flujo incorrecta	< 32 seg.

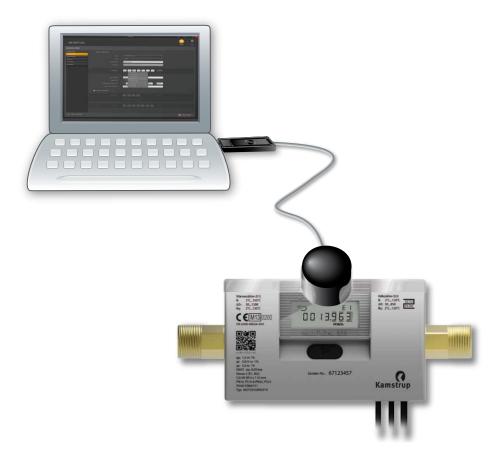
Registradores de datos

El MULTICAL® 302 tiene una memoria permanente (EEPROM), en la que se guardan los valores de varios registradores de datos diferentes. EL contador incluye los siguientes registradores de datos:

Intervalo de registro de datos	Profundidad de registro de datos	Valor registrado
Registrador anual	15 años	Contador de registro
Registrador mensual	36 meses	Contador de registro
Registrador diario	460 días	Contador de registro
Registrador horario	960 horas	Contador de registro
Registrador Info	50 eventos (se pueden visualizar 36 eventos)	Código Info y fecha
Registrador de config.	25 cambios de configuración	Nueva config. y fecha

Fuente de alimentación

El MULTICAL® 302 está disponible con 1 ó 2 baterías tipo A incorporadas,


Una batería de litio tipo A es suficiente para alimentar al MULTICAL® 302 por un período de funcionamiento de 6 años.

Dos baterías de litio tipo A son requeridas para alimentar al MULTICAL® 302 por 12 años.

Programación y verificación

METERTOOL para MULTICAL® 302 es un programa para Windows que reúne todas las opciones de programación del integrador. Con METERTOOL es posible probar y verificar el integrador. Por favor contacte con Kamstrup para más información.

Comunicación

El MULTICAL $^\circ$ 302 ofrece dos formas diferentes de comunicación, M-Bus cableado ó M-Bus inalámbrico.

M-Bus cableado

Si el contador se suministra con M-bus cableado integrado, se debe seguir el protocolo M-Bus de acuerdo a la norma EN 13757-3:2013.

La conexión al M-Bus Máster se establece a través del cable fijo de 2 hilos de 1,5 m. La conexión es independiente de polaridad y la interfaz de M-Bus está galvánicamente separada del resto del contador.

La velocidad de comunicación es de 300 o 2400 baudios y el contador cuenta con detección automática de velocidad. Incorpora direccionamiento tanto primario como secundario. El consumo de energía es de 1 unidad de carga (1.5mA).

Los siguiente datos pueden ser leídos a través de M-Bus:

Encabezado de datos M-Bus	Datos actuales	Datos a fecha de corte*	Datos del contador
ID de M-Bus	Energía térmica E1	Energía térmica E1	Número de serie
ID de fabricante	Energía de refrigeración E3	Energía de refrigeración E3	Número de cliente 1
Versión	Energía m³ x T1= E8	Energía m³ x T1= E8	Número de cliente 2
Tipo de equipo	Energía $m^3 \times T2 = E9$	Energía $m^3 \times T2 = E9$	Número de config. 1
Contador de accesos	Volumen V1	Volumen V1	Número de config. 2
Estado	Contador horario	Potencia máxima	Tipo de contador
Configuración	Error contador horario	Caudal máximo	Revisión de SW
	T1	Fecha de corte de facturación	
	T2		
	T1-T2		
	Potencia actual		
	Potencia máx. del mes*		
	Caudal actual		
	Caudal máx. del mes*		
	Código Info		
	Fecha/Hora		

8

Para más detalles, consulte la descripción técnica de M-Bus para MULTICAL $^{\circ}$ 302.

^{*)} Los datos mensuales se transmiten mensualmente de forma predeterminada. Es posible cambiar a datos anuales por medio de un comando de M-Bus.

Comunicación

M-Bus inalámbrico

Si el contador tiene M-Bus inalámbrico incorporado, se puede elegir entre el modo C1 ó el modo T1 OMS.

El Modo C1 se utiliza con los sistemas de lectura de Kamstrup y para lecturas de contador drive-by en general.

El modo T1 OMS se utiliza en redes estacionarias basadas en OMS. El contador cuenta con una antena interna.

Modo C1

Protocolo de acuerdo a la norma EN 13757-4:2013. Intervalo de transmisión de 16 seg. Encriptación AES individual de 128 bits.

Paquete de datos Modo C1

Contador térmico	Contador de frío	Contador de calor y frio
Encabezado	Encabezado	Encabezado
ID de fabricante	ID de fabricante	ID de fabricante
Número de serie	Número de serie	Número de serie
Versión	Versión	Versión
Estatus	Estatus	Estatus
Contador horario	Contador horario	Contador horario
Datos actuales	Datos actuales	Datos actuales
Energía térmica E1	Energía de refrigeración E3	Energía térmica E1
Volumen V1	Volumen V1	Energía de refrigeración E3
Potencia	Potencia	Potencia
Código Info	Código Info	Código Info
Datos a fecha de cierre*)	Datos a fecha de cierre*)	Datos a fecha de cierre*)
Energía térmica E1 último mes	Energía de refrigeración E3 último mes	Energía térmica E1 último
Ó	ó	mes
Energía térmica E1 último año	Energía de refrigeración E3 último año	Energía de refrigeración E3 último mes
		ó
		Energía térmica E1 último año
		Energía de refrigeración E3 último año

^{*)} Los datos mensuales o anuales dependen de la configuración HH. Para más detalles, puede consultar la descripción técnica para MULTICAL® 302.

Comunicación

Modo T1 OMS

Protocolo de acuerdo a la norma EN13757-4:2013 y a las especificaciones OMS volumen 2, edición 3.0.1.

Intervalo de transmisión de 900 seg. Encriptación AES individual de 128 bits.

Paquete de datos en Modo T1 OMS

Contador térmico	Contador de refrigeración	Contador de calor y frío
Encabezado	Encabezado	Encabezado
Tipo de equipo	Tipo de equipo	Tipo de equipo
ID de fabricante	ID de fabricante	ID de fabricante
Número de serie	Número de serie	Número de serie
Versión	Versión	Versión
Estatus	Estatus	Estatus
Datos actuales	Datos actuales	Datos actuales
Energía térmica E1	Energía térmica E3	Energía térmica E1
Volumen V1	Volumen V1	Energía de refrigeración E3
Potencia	Potencia	Volumen V1
Caudal	Caudal	Potencia
T1	T1	Caudal
T2	T2	T1
Contador horario	Contador horario	T2
Fecha	Fecha	Contador horario
Código Info	Código Info	Fecha
		Código Info
Datos a fecha de cierre*)	Datos a fecha de cierre*)	Datos a fecha de cierre*)
Energía térmica E1 último mes	Energía térmica E3 último mes	Energía térmica E1 último mes
Volumen V1 del último mes	Volumen V1 último mes	Energía de refrigeración E3 último mes
ó	ó	Volumen V1 último mes
Energía térmica E1 último año	Energía de refrigeración E3 último año.	ó
Volumen V1 último año	Volumen V1 último año	Energía térmica E1 último año
Fecha de cierre de facturación	Fecha de cierre de facturación	Energía de refrigeración E3 último año
		Volumen V1 último año
		Fecha de cierre de facturación

^{*)} Los datos mensuales o anuales dependen de la configuración HH. Para más detalles, consulte la descripción técnica para MULTICAL® 302.

Datos homologados

Directivas UE Directiva de Instrumentos de Medida (MID)

Directiva de baja tensión

Directiva de compatibilidad electromagnética

Directiva de equipos presurizados

Normas EN 1434:2007, prEN 1434:2013 y PTB TR K7.2

Contador térmico Aprobación: DK-0200-MI004-031 Rango de temperatura θ: 2 °C...150 °C

Rango diferencial ΔΘ: 3 K...130 K

tura mínima y por lo tanto mide desde 0.01 °C y 0.01 K.

Las temperaturas mínimas indicadas solo

están relacionadas con la aprobación de

tipo. El contador no tiene corte de tempera-

Contador de refrigeración Homologación: PTB TR K7.2 (22.72/13.XX)

Rango de temperatura θ : 2 °C...150 °C Rango diferencial $\Delta\Theta$: 3 K...85 K

Precisión Integrador: $E_c \pm (0.5 + \Delta\Theta_{min}/\Delta\Theta)$ %

Caudalímetro: $E_q \pm (2 + 0.02 q_r/q_i)$, pero sin exceder $\pm 5 \%$

Rango dinámico q_i:q_p 1:250 y 1:100

Sondas de temperatura Tipo 302-T: Pt500 – EN 60 751, 2 hilos, conexión cableada

Designación EN 1434 Clase de precisión 2 y 3 / Clase ambiental A

Designación MID Entorno mecánico: Clase M1 y M2

Entorno electromagnético: Clase E1

	Caudal Nom. q _P	Caudal Máx. q₅	Caudal de corte min.	Caudal de satura- ción	Pérdida de pre- sión ∆p @ q _p	Conta- dor con conexión roscada	Longitud
Ref.	[m³/h]	[m³/h]	[l/h]	[m³/h]	[bar]		[mm]
302Txxxxx10xxx	0,6	1,2	3	3,0	0,02	G¾B	110
302Txxxxx11xxx	0,6	1,2	3	3,0	0,02	G¾B	130
302Txxxxx12xxx	0,6	1,2	3	3,0	0,02	G¾B	165
302Txxxxx40xxx	1,5	3,0	3	5,0	0,09	G¾B	110
302Txxxxx41xxx	1,5	3,0	3	5,0	0,09	G¾B	130
302Txxxxx42xxx	1,5	3,0	3	5,0	0,09	G¾B	165
302Txxxxx70xxx	1,5	3,0	3	5,0	0,07	G1B	130
302Txxxxx71xxx	1,5	3,0	3	5,0	0,07	G1B	190
302Txxxxx72xxx	1,5	3,0	3	5,0	0,07	G1B	220
302TxxxxxA0xxx	2,5	5,0	5	7,0	0,09	G1B	130
302TxxxxxA1xxx	2,5	5,0	5	7,0	0,09	G1B	190
302TxxxxxA2xxx	2,5	5,0	5	7,0	0,09	G1B	220

Datos eléctricos

Datos del integrador

Precisión típica Integrador: $E_c \pm (0.15 + 2/\Delta\Theta)$ %

Par de sondas: $E_t \pm (0.4 + 4/\Delta\Theta)$ %

Pantalla LCD – 7 (8) dígitos con altura de 6 mm

Resolución 9999,999 – 999999,99 – 99999999

Unidades de energía MWh – kWh – GJ

Registrador de datos (EEPROM) 960 horas, 460 días, 24 meses, 15 años, 50 eventos Info, 25 registros de configuración

Reloj/calendario Reloj, calendario, compensación años bisiestos, fecha de cierre

Comunicación de datos Protocolo KMP con CRC16 utilizado para la comunicación óptica

M-Bus cableado Protocolo según la norma EN 13757-3:2013, 300 y 2400 con velocidad de comunicación y

detección automática de baudios. Consumo: 1 unidad de carga (1.5 mA). Cable fijo de 2 hilos de 1.5 m. Sin polaridad

M-Bus inalámbrico Modo C1 protocolo según EN 13757-4:2013. Encriptación AES individual de 128 bits.

Intervalo de transmisión: 16 sec.

Frequencia de transmisión: 868,95 MHz

Modo T1 OMS protocolo según EN13757-4:2013 y Especificación OMS Volumen 2 edición

3.0.1. Encriptación AES individual de 128 bits.

Intervalo de transmisión: 15 min. Frequencia de transmisión: 868,95 MHz

Potencia de sondas de temperatura $< 0.5 \mu W RMS$

Tensión de alimentación 3.6 VDC \pm 0.1 VDC

Datos EMC Cumple la norma EN 1434 clase A (MID clase E1)

Medida de temperatura				
Pt500 de 2 hilos	T1 Temp. de impulsión	T2 Temp. de retorno	ΔΘ (T1-T2) Medición de calor	ΔΘ (T2-T1) Medición de frío
Rango de medición	0,00155,00 °C	0,00155,00 °C	0,01155,00 K	0,01155,00 K

Batería 1 batería de litio tipo A, 3.65 VDC 2 baterías de litio tipo A, 3.65 VDC

Intervalo de reemplazo 6 años 12 años Contenido de Litio 0.96 g $2 \times 0.96 \, \mathrm{g}$

Clase de transporte No está sujeto a reglamentación sobre mercancías peligrosas

Fuera de los EE.UU. No restringido para transporte/No asignado a la clase 9

Dentro de EE.UU. Pertenece a la categoría de "small Primary lithium cells"

Datos mecánicos

Clase medio ambiental Cumple la norma EN 1434 clase A y MID clase E1 y M2

	Clase de protección	Temperatura ambiente	Clase medio ambiental		
Integrador	IP65		Sin condensación	En interior	
Caudalímetro y par de sondas de temperatura	IP68	555 °C	Condensación	(posición cerrada)	

Temperaturas medias

Contadores térmicos 302-T 2...130 °C

Contadores de refrigeración 302-T 2...130 °C

Contadores de calor/frío 302-T 2...130 °C

A temperatura media por debajo de 15 °C el integrador se deberá montar en pared para prevenir condensación.

A temperatura media en el caudalímetro por encima de 90 °C, el integrador se deberá montar en pared para evitar temperaturas muy altas, especialmente en la pantalla y con respecto a la duración de la batería.

Liquido calo-portador Agua

Temperatura de almacenamiento -25...60 °C (caudalímetro seco)

Nivel de presión (con rosca) PN16 y PN25

Peso Desde 0.7 hasta 1.1 kg dependiendo del tamaño del caudalímetro y del extensor

Cable del caudalímetro 1,2 m (cable no desmontable)

Cables de sondas de temperatura 1,5 m (cables no desmontables)

Material

Partes húmedas Cuerpo del caudalí- Latón antidezincificación (CW 602N)

metro

Diafragmas Acero inoxidable, W.no. 1.4404

Juntas EPDM

Tubo de medición Termoplástico, PES 30% GF

Reflectores Termoplástico, PES 30% GF y acero inoxidable, W.no. 1.4306

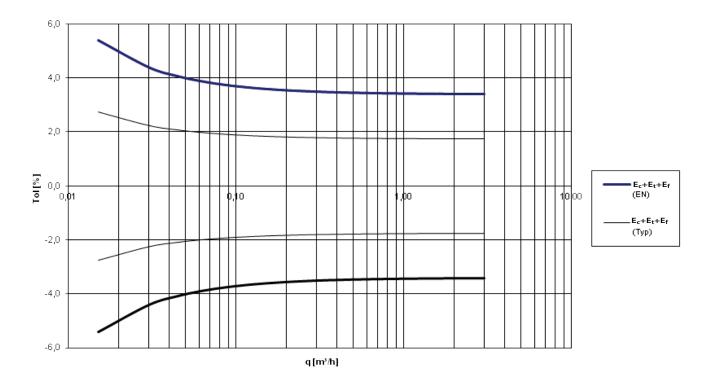
Cubierta del caudalímetro Termoplastico, PC 20% GF Soporte de pared Termoplástico, PC 20% GF

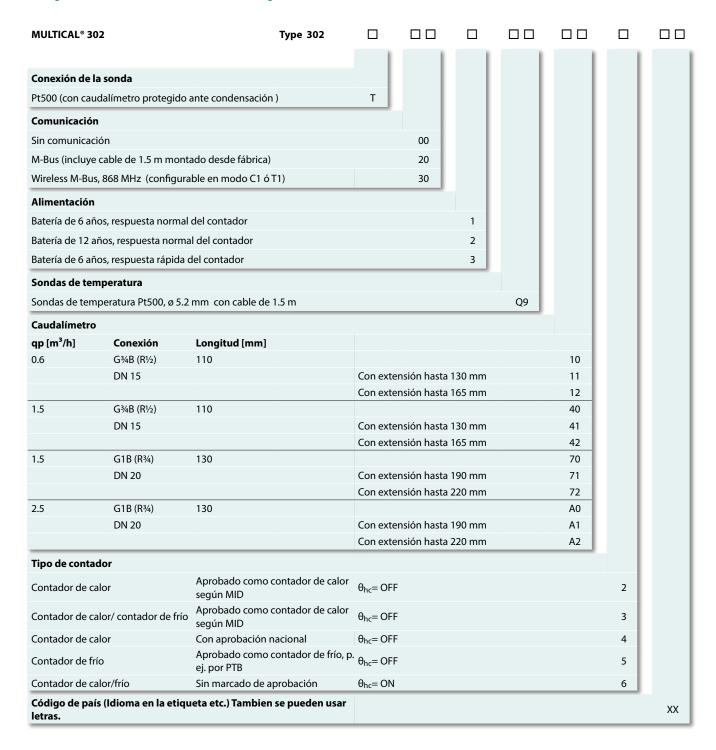
Cubiertas del integrador Superior Termoplástico, PC 10% GF

Base Termoplástico, ABS con juntas TPE (elastómero termoplástico)

Cables Caudalímetro Cable de silicona con aislamiento de Teflón interior

Temperatura Cable de silicona con aislamiento de Teflón interior

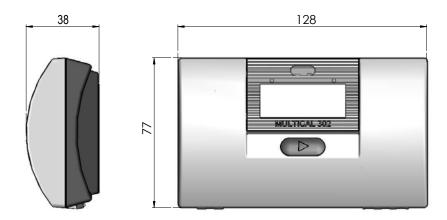

M-Bus Cable de silicona con aislamiento de Teflón interior

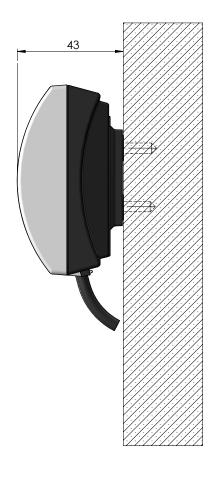

Precisión

Componentes de contador térmico	MPE según la norma EN 1434-1	MULTICAL® 302, precisión típica
Caudalímetro	$E_f = \pm (2 + 0.02 q_p/q) \%$	$E_f = \pm (1 + 0.01 q_p/q) \%$
Integrador	$E_c = \pm (0.5 + \Delta\Theta_{min}/\Delta\Theta) \%$	$E_c = \pm (0.15 + 2/\Delta\Theta) \%$
Par de sondas	$E_t = \pm (0.5 + 3 \Delta\Theta_{min}/\Delta\Theta) \%$	$E_t = \pm (0.4 + 4/\Delta\Theta) \%$

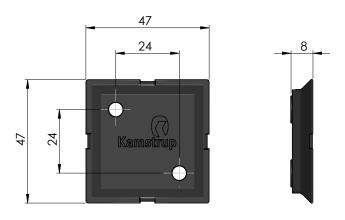
MULTICAL® 302 q $_{\rm p}$ 1,5 m $^3/h$ @A Θ 30K

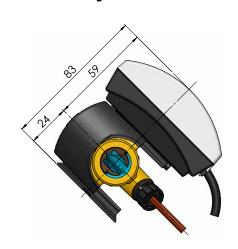
Especificaciones de pedido

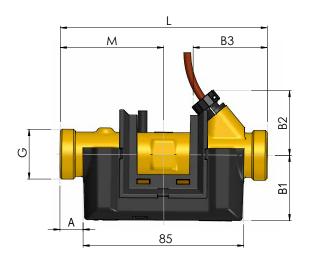



Croquis dimensional

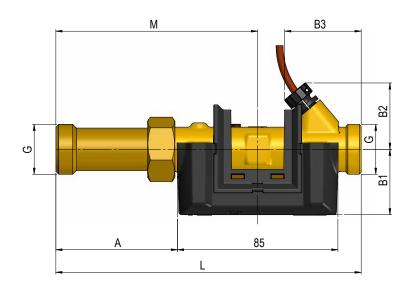
Todas las medidas en [mm]


Integrador


Integrador montado en pared

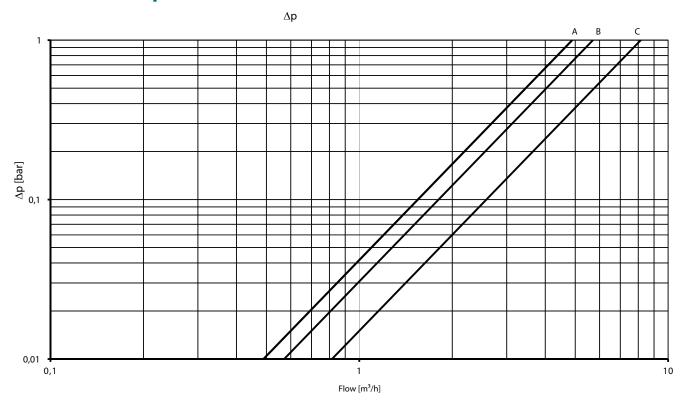

Soporte para montaje en pared

MULTICAL® 302 con integrador montado en caudalímetro



Croquis dimensional

Rosca	L [mm]	A [mm]	B1 [mm]	B2 [mm]	B3 [mm]	Peso aproxi- mado [kg] *)
G¾B (R½)	110	12	35	35	40	0.7
G1B (R3/4)	130	22	38	38	50	0.8



Rosca	L [mm]	M [mm]	A [mm]	B1 [mm]	B2 [mm]	B3 [mm]	Peso aproxi- mado [kg] *)
G34B (R1/2)	130	73	30	35	35	40	0.8
G34B (R1/2)	165	109	66	35	35	40	0.8
G1B (R¾)	190	124	81	38	38	50	1.0
G1B (R34)	220	154	111	38	38	50	1.1

^{*)} El peso indicado comprende todo el contador incluyendo caudalímetro, integrador, par de sondas y baterías 2 x A. Los accesorios tales como racores y porta-sondas (si hubiera), así como el embalaje no están incluidos en el peso indicado.

Pérdida de presión

Gráfico	q _p	Tamaño	Diámetro nom.	Δp@q _p	kv	Q@0,25 bar
	[m³/h]		[mm]	[bar]		[m³/h]
Α	0,6	G34B x 110 mm	DN15	0,02	4,89	2,4
Α	1,5	G¾B x 110 mm	DN15	0,09	4,89	2,4
В	1,5	G1 x 130 mm	DN 20	0,07	5,71	2,9
С	2,5	G1 x 130 mm	DN 20	0,09	8,15	4,1

Accesorios

3026-655.A	Soporte de pared
6561-346	Soporte para cabezal de lectura óptica
3130-262	Tapón para sonda de temperatura en el caudalímetro
6556-511	Racor porta-sonda R½ x M10
6556-512	Racor porta-sonda R¾ x M10
5920-257	Válvula de bola G½ con socket para sonda M10x1
5920-271	Válvula de bola G¾ con socket para sonda M10x1
6557-302	Vaina porta-sonda G½ de 35 mm
6699-099	Cabezal de lectura óptica con conector USB
6699-102	Cabezal de lectura óptica con conector RS232 con D-sub 9F
6699-304	Cabezal de lectura óptica para NOWA
6699-016	Software de Kamstrup NOWA KAS
6699-724	METERTOOL para MULTICAL® 302
6699-725	METERTOOL LogView para MULTICAL® 302

Nota: Las válvulas de bola M10x1 con conector (tipo: 65-56-474, -475 y -476) no son adecuadas para sondas con junta tórica ya que están diseñados para juntas planas.

Accesorios

Racores (PN16)

Código de orden	Tamaño	Racor por- ta-sonda	Racor
6561-323	DN15	R½	G¾
6561-324	DN20	R3⁄4	G1

Juntas para racores

Código de orden	Tamaño (racor)
3130-126	G¾
3130-127	G1

Extensores

Código de orden	Descripción	Longitud [mm]	Longitud total [mm]
6556-505	Extensor G¾B	20	130
6556-506	Extensor G¾B	55	165
6556-507	Extensor G1B	60	190
6556-508	Extensor G1B	90	220

